
Dynamic Liquidity Concentration with an Oracle

Supplied Price and Implied Volatility

Taylor Hulsmans
Sigmadex Foundation

July 2021

Abstract

A constant products market maker algorithm is defined that utilizes
the implied volatility and oracle price to dynamically concentrate liquid-
ity to increase capital efficiency during periods of low expected volatility,
while reducing impermanent loss during periods of high expected volatil-
ity.

1 Introduction

Since the popularization of Uniswap, the innovation challenges in the AMM
space have been concerned with the minimization of impermanent loss for the
liquidity provider, and the maximization of capital efficiency to reduce slippage
for the swapping architecture. Ideas upon solving these issues have revealed a
sort of iron triangle. Capital efficiency amplifies impermanent loss, while negat-
ing impermanent loss exposes other loss vectors such as arbitrage loss, reducing
LP incentives to provide capital at all. To work around these opposing con-
straints, a novel approach to liquidity concentration is developed and formed
into a market making algorithm.

The solution presented in this paper utilizes the implied volatility of an asset,
a sort of weather prediction of the volatility based on the behaviour of the assets
overlaid options market, to dynamically adjust the amount of volume around
the market price. We should note that while it is possible, and perhaps wiser,
to use this market price for the assets as are physically traded, and make a
DAMM as opposed to an AMM, this is not the subject of this paper. Here the
oracle market price and implied volatility is only utilized in the concentration
of liquidity - The physical price paid by the user is still forged in the algorithm
through arbitragers.

1



2 Concentrated Liquidity: What is it?

In traditional market makers, it is up to the users to show up and provide buy
and sell orders at certain prices to generate depth, or volume available at a
certain price, to match trades. Theoretically speaking, it makes sense that a
lot of buy orders exist at low prices to get deals, and a lot of sell orders exist
and high prices to get a premium. Regardless of where they are on the price
curve, these opportunities, or degrees of freedom to swap the assets are called
liquidity. It is by the matching of these orders, most often at the highest buy
order, and lowest sell order is the market price formed.

Figure 1: An orderbook based market maker depth chart

In contrast to traditional market makers, Automated ones often do not have
the privilege of defining where their buy and sell orders exist on this price curve.
When a liquidity provider in UniswapV2 for example, deposits the assets, in ef-
fect a bunch of buy and sell orders are scattered uniformly along the price curve.
When the goal is to provide liquidity at the market price, a lot of capital that
could be preventing slippage is otherwise left unused, this is referred to as cap-
ital efficiency of an automated market maker.

This reasoning lies at the heart of Uniswaps transition from v2 to v3, which
allows users to set custom price ranges on individual liquidity positions, uni-
formly distributing it from their pa to pb. instead of 0 to ∞. Over many
liquidity positions, these have a habit of forming a normal like distribution of
liquidity around the market price. As we can see, liquidity becomes alot more
concentrated around the market price of an asset, providing much more depth
to draw from before evoking a unit of slippage, becoming much more capital

2



Figure 2: The UniswapV2 Liquidity at price (tick) graph

Figure 3: The UniswapV3 Liquidity at price

efficient. However, the downside to the LP in concentrating their liquidity is
exposing themselves to a greater degree of impermanent loss. While UniswapV3
compensates users with greater proportion of the fees for doing this, past prices
do not predict future prices and most pairs in crypto are inherently volatile,
leaving it up to the user to really guess a liquidity concentration range and
hope for the best and engage in active management when things go wrong. I’d
also add that manual concentration may not be the best tool from a behavioural
economics perspective, as positions fall out of range, a user may engage in the
sunk cost fallacy, choosing not to make their impermanent loss permanent and
simply hope that it will fall back into range, while loosing out on many days
of transaction fees. These consideration are at the heart of this protocol, what
would be a way to bring back the passive nature of liquidity provisioning, while
increasing liquidity concentration while reducing impermanent loss. The solu-
tion here is rather intuitive- we make liquidity concentration dynamic!

3



3 A new Approach to Liquidity Concentration

The Black-Scholes options pricing model was a revolution in financial mathe-
matics. Not only is it one of the best ways to determine the fair price of an
option, but it can be turned on its head to infer the markets expectations on
the future volatility of an asset, a sort of weather forecast for price stability.

We start by inheriting the Chainlink price and implied volatility to construct
the probability density function for the asset. This is where we expect prices
to fall in the given time frame. In accordance with the financial 6 sigma event
tolerance rule, we calculate the minimum and maximum price band for the asset
(could be made lower with governance voting on a per asset basis).

94 96 98 100 102 104 106
0

0.2

0.4

Price

P
ro
b(
x

)

Figure 4: An asset with an average price of 100 and volatility of (σ = 1). bars
denote -6 and +6 standard deviations away respectively

P (x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(1)

We than find a liquidity distribution function that fills available liquidity under
its curve. We solve for a in the following equation

a

σ
√

2π

∫ µ+6σ

µ−6σ

e
−(x−µ)2

2σ2 dx =
√
qaqb (2)

Which, rather thankfully, is roughly equal to the liquidity
√
qaqb

erf(3
√

2)
= a ≈ √qaqb (3)

We than take A and draw a liquidity concentration function reminiscent of
Uniswapv3 ’Tick space’ and allocate the available liquidity along this curve.
Following our example, let us use qa = 1000, qb = 10, σ = 1 and µ = 100

Depth(p) =

√
qaqb

σ
√

2π
e

−(p−µ)2

2σ2 (4)

4



94 96 98 100 102 104 106
0

10

20

30

Price

D
ep
th

(p
)

Figure 5: The Depth of the chart represents how much liquidity is available at
that specific price point

3.1 Performing a Swap

For example, let us consider a user who wishes to purchase one unit of qb. Our
depth graph than is subdivided into ticks, in effect buckets of liquidity where p2
- p1 is 0.0001% or one basis point. Each bucket has a price that is defined as its
starting point along the depth-price curve. To begin our swap we calculate that
amount of liquidity available at the first price by first calculating basis point
price change of the asset, and integrating the curve over it∫ µ+bp

µ

Depth(p) =

∫ µ+bp

µ

√
qaqb

σ
√

2π
e

−(p−µ)2

2σ2 dp (5)

Following our example as we traverse the first tick∫ 100.01

100

Depth(p) =

∫ 100.01

100

√
qaqb

1 ∗
√

2π
e

−(p−100)2

2∗12 dp = 0.398936 (6)

For this tick, ≈ 0.4 liquidity points are exposed. We denote this Lt the quantities
of each asset at this tick is given as qat and qbt respectively. Given the following
system of equations we calculate the quantity swapped for this tick

Lt =
√
qatqbt = 0.398936 (7)

Pt =
qat
qbt

= 100 (8)

And we are trying to get qb out, one pays√
qat

qat
Pt

=
√
qatqbt = Lt (9)

√
qat

qat
100

=
√

1000 ∗ 10 = Lt (10)

qa = 3.98936 (11)

5



qb = 0.0398936 (12)

around 3.98936 units of a to receive around 0.0398936 units of b, we than traverse
to the next tick∫ 100.02

100.01

Depth(p) =

∫ 100.02

100.01

√
qaqb

1 ∗
√

2π
e

−(p−100)2

2∗12 = 0.398896 (13)

and than solve the system of equations again to determine the swap

Lt =
√
qatqbt = 0.398896 (14)

Pt =
qat
qbt

= 100.01 (15)√
qat

qat
100.01

= 0.39889 (16)

qa = 3.98916 (17)

qb = 0.0398876 (18)

We can note that over this tick, supplies 3.98916 units of qa for 0.0398876
units of qb. This process continues until we allocate 1 full unit of qb for our
swap mechanism. Generally speaking the price for an amount determined by
the other is given by the set of equations

x∑
i=µ

√
L2
i (µ+ i(bp)) = qa−required (19)

x∑
i=µ

√
L2
i

µ+ i(bp)
= qb−bought (20)

Where

Li =

∫ µ+2i(bp)

µ+i(bp)

√
qaqb

σ
√

2π
e

−(p−µ)2

2∗σ2 dp (21)

where bp is the one basis point of µ, qa and qb are the total pool liquidity, and
qai and qbi is the liquidity of the current tick

4 Conclusion

An Automated Market maker that dynamically concentrates liquidity during
low expected volatility to increase capital efficiency, while doing the converse
during periods of high expected volatility to reduce impermanent loss has been
derived. It begins by inheriting the oracle price and implied volatility to generate
a normal distribution around the average price to -6 to +6 standard deviations,
as found through the implied volatility, as is standard in finance. The total
liquidity of the pool is than distributed along this curve in buckets of 1 basis

6



point called ticks. A person wishing to swap tokens in the pool starts at the
point of the curve the pool is at (not necessarily the oracle price) and takes
from each successive bucket at the price of the bucket until their order is filled.
The algorithm routinely updates itself, drawing parameters from the oracle as is
economical to reform the curve. Parameters like the 6 σ rule could be governance
set on a per pool basis, or even divided into pools with different overall risk
tolerance.

7


